Beam Dynamics Issues in Linear non-Scaling FFAGs

J. Scott Berg
Brookhaven National Laboratory
NuFact 06 WG3
28 August 2006

Outline

- Error tolerance
- Longitudinal dynamics
- Time of flight dependence on transverse amplitude
- Electron model: EMMA

Basic Design Principles

- Tune depends on energy: pass through resonances
- Use linear magnets to avoid driving nonlinear resonances
- Maintain symmetry (short, identical cells) to avoid driving linear resonances
 - Errors break this symmetry
- Accelerate rapidly through remaining weakly driven resonances

Tune Dependence on Energy

Error Analysis (Machida)

- Introduce magnet displacements and gradient errors
- \bullet Find that 20–50 μ m displacements and 2–5 \times 10^{-4} gradients are tolerable in the baseline
- Ignoring longitudinal dynamics: may complicate
- Should look at other errors: random nonlinearities, RF phase errors, others

Longitudinal Dynamics

- Linear non-scaling FFAGs have unusual dynamics: particles move through channel in phase space
- Caused by time of flight dependence on energy that is isochronous at one point within energy range
- Need to understand optimal design
 - Optimal beam orientation
 - Optimal choice of machine parameters
- Studied under assumption that time of flight is symmetric parabola, and single harmonic RF
- Needs more work in more general case

Longitudinal Phase Space

Time of Flight vs. Energy

Time of Flight Dependence on Transverse Amplitude What is the Problem?

- Particles with large transverse amplitudes aren't accelerated
- Time of flight depends on transverse amplitude
- Reason: larger amplitudes, angles make longer path length

- Different times of flight for different amplitudes create acceleration problems in FFAGs
- Time of flight dependence on amplitude related to chromaticity

$$\frac{d\overline{t}}{ds} = -\partial_E H_T - \frac{2\pi(\partial_E \boldsymbol{\nu}) \cdot \boldsymbol{J}_n}{L} + O(\boldsymbol{J}_n^{3/2}).$$

Acceleration of Particle Different Transverse Amplitudes

Time of Flight Depends on Transverse Amplitude

Acceleration Channels in FFAGs

Plan for Addressing Time of Flight Problem

Time of flight difference at end for uniform acceleration

$$-2\pi\Delta\boldsymbol{\nu}\cdot\boldsymbol{J}_n/(\Delta E)$$

 $\Delta \nu$ is tune difference from beginning to end per cell, ΔE is energy gain per cell

- Increase energy gain per cell (expensive)
- Use third harmonic RF to make phase space more forgiving (kind of expensive)
- Correct chromaticity (free!) in FFAG
- Put positive chromaticity in transfer lines

Chromaticity Correction Method

- Correct chromaticity with a sextupole component to magnets as follows
 - Construct a linear lattice where
 - ⋆ Magnet lengths, drift lengths, and the number of cells are fixed
 - ⋆ Time of flight is the same at low and high energy
 - ⋆ The following three distances in the tune plane are equal
 - > Low energy tune ($\nu_{lo.0}$) to $3\nu_x = 1$ line
 - > Low energy tune to $\nu_x \nu_y = 0$ line
 - > High energy tune ($\nu_{hi.0}$) to $\nu_x 2\nu_y = 0$ line

Chromaticity Correction Method

- Chromaticity correction procedure (cont.)
 - Add sextupole components, and modify dipole and gradient components so that
 - ★ Magnet lengths, drift lengths, and the number of cells are fixed
 - ⋆ Time of flight is the same at low and high energy
 - * If x is the fraction of chromatic correction

$$> \nu_{lo} = (1 - x/2)\nu_{lo,0} + (x/2)\nu_{hi,0}$$

- $> \nu_{hi} = (x/2)\nu_{lo,0} + (1 x/2)\nu_{hi,0}$
- Choice of tune range to avoid third order resonances which sextupole will drive
- Plot shows to x = 0.5

Tune Range with Chromaticity Correction

Observations

- Note chromaticity is locally higher!
- However, for uniform acceleration, what matters is the total change in tune
 - However, increased chromaticity may affect phase space locally!
- Time of flight range actually improves with more sextupole
- Must determine if dynamic aperture is sufficient
 - Losses likely on $4\nu_x = 1$ resonance
 - Should ascertain if we have decent dynamic aperture except for that

Time of Flight Variation with Chromaticity Correction

Dynamic Aperture (Machida)

- Dynamic aperture less for higher chromaticity
- Some dynamic aperture reduction on $4\nu_x=1$ or $4\nu_y=1$
- 20–30% may be tolerable

Electron Model (EMMA)

- Linear non-scaling FFAG has never been built
- Would like to test whether we understand the dynamics in such a machine
- Build a 10–20 MeV model that accelerates electrons
- Test our understanding of
 - Longitudinal dynamics
 - Transverse dynamics when acelerating through many weak resonances
 - Sensitivity to errors
- In the proposal stages now, sited at Daresbury

Longitudinal Dynamics

Conclusions and Plans

- Errors can significantly degrade performance of linear non-scaling FFAGs
- We need to understand the unusual longitudinal dynamics of these machines to make optimal use of them
- Time of flight dependence on transverse amplitude is a significant difficulty which must be addressed
 - We have a plan of attack
- We are hoping to build an electron model to test our understanding of linear non-scaling FFAGs

